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Abstract 
Forensic voice comparison (FVC) involving bilingual speakers 
presents a substantial challenge to forensic practitioners. 
Previous FVC research suggests that discriminatory power is, 
unsurprisingly, weaker in language mismatch conditions than 
in the language match conditions. The present paper extends on 
previous work examining bilingual speakers to consider 
trilingual speakers. Specifically, we conduct FVC tests of 
Cantonese-English-Mandarin trilinguals using acoustic-
phonetic data extracted from filled pauses and using an 
automatic speaker recognition (ASR) system. A different 
language effect was found in the two systems, such that the 
Mandarin-English condition produced the best performance in 
the acoustic-phonetic based system, while the Cantonese-
English condition produced the worst performance in the ASR 
system. Individual-speaker analysis suggests that trilingual 
speakers’ proficiency in L2 and L3 seems to affect how well 
they perform in cross-language FVC.  
Index Terms: forensic voice comparison, cross-language 
comparison, filled pauses, automatic speaker recognition, 
trilingualism. 

1. Introduction
The Codes of Practice of the International Association for 
Forensic Phonetics and Acoustics suggest that members should 
exercise particular caution with cross-language comparisons 
[1], reflecting a challenge of conducting forensic voice 
comparisons (FVC) with multilingual speakers. Echoing such a 
challenge, increasingly, studies have started to examine 
forensic phonetics in bilingual or multilingual contexts [2-8]. 

Among these studies, there are two lines of research. The 
first involves testing cross-language FVC using filled pauses. A 
few studies suggest that bilingual speakers use the same set of 
filled pauses in their L1 and L2 [3-4]. This is because filled 
pauses are difficult to manipulate consistently [9] as they are 
thought to be produced below the level of consciousness. This 
makes them good candidate features for cross-language speaker 
identification. However, others found contrasting results [2], 
[5], suggesting that bilingual speakers use language-specific 
filled pauses in L1 and L2, and thus filled pauses would not be 
very useful for cross-language FVC. In particular, [6] examined 
filled pauses of an Italian-German-English trilingual and found 
that the trilingual speaker tended to use different sets of filled 
pauses in the three languages. As [6] only examined one 
trilingual speaker, it is unclear whether similar patterns would 
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be found using a larger sample. 
Another line of research is more forensic in focus, 

investigating the speaker-discriminatory power of certain 
speech features using different statistical models following the 
likelihood ratio (LR) framework [7], [10], [11]. [11] tested 
cross-language FVC based on English-French bilingual 
speakers’ long-term formant distributions (LTFDs) using the 
multivariate kernel density (MVKD) [12] and Gaussian mixture 
model-Universal background model (GMM-UBM) [13] 
approaches. Results suggest that cross-language comparisons in 
general generated much weaker strength of evidence than same-
language comparisons, particularly when the test data and 
reference data were mismatched. A similar pattern was also 
observed in [11]’s ASR results using an x-vector system, except 
that the system validity was in general very good even in the 
language mismatch conditions (Cllr < 0.05). [7] tested whether 
and how the mismatch between test samples, and between the 
test samples and calibration data would affect the overall 
performance of ASR system. Testing on English-French 
bilingual speech data, they found that the language mismatch 
conditions produced poorer overall performance than the 
language match conditions. More severe miscalibration was 
found where there was a language mismatch between the test 
and calibration sets. Apart from the system-level analysis, 
individual speaker-level analysis can also provide diagnostic 
insights into system performance [10]. For instance, Zooplot 
analysis can identify problematic speakers using the biometric 
menagerie [14-15]. 

2. The current study
2.1 Research Questions 
The current study extends previous work on multilingual FVC 
with a focus on trilingual speakers. Specifically, we explore the 
following two research questions: 

• Are filled pauses good features for cross-language
FVC with trilingual speakers? 

• Do individual trilingual speakers show different
behaviour within the ASR system when comparing different 
mismatch conditions of the three languages?  

The novelty of the current project is threefold. First, the 
project examines cross-language FVC using filled pauses from 
a larger set of trilingual speech data compared to [6], filling the 
gap of research on the phonetic properties of trilingual filled 
pauses. Second, unlike [7], [11] where English-French 
bilinguals were tested, the current project tests Cantonese-
English-Mandarin trilingual speakers from Hong Kong, 
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providing evidence from non-Indo-European languages. For 
example, Cantonese (the Hong Kong trilinguals’ L1) and 
Mandarin (L3) are both Sinitic languages and share many 
similarities, whereas English (L2) is distinct from Cantonese 
and Mandarin in its phonological and syntactic features. These 
differences allow many interesting comparisons across the three 
languages. Third, while [10] examined individual variability of 
FVC on different parameters, this project allows us to examine 
individual speaker-level variability across different mismatch 
conditions. This leads to one very interesting question: as 
trilingual speakers speak Cantonese, English and Mandarin, 
which mismatch condition would generate the stronger 
discriminative power?  

Based on the data from [16], the current project first 
examines FVC of filled pauses using acoustic-phonetic 
approach (i.e. Study 1). Cross-language FVC was also 
conducted using an ASR system with the same set of interview 
data (i.e. Study 2).  

2.2 Participants & Experiment design 

Twenty-one female Cantonese-English-Mandarin trilingual 
speakers participated in three mock police interviews. They 
were all undergraduate students (age range: 18-27 years old) 
from a university in Hong Kong and spoke Cantonese as their 
first language. Participants attended three mock police 
interviews as part of a larger forensic phonetic project. They 
had an interview in Cantonese first, followed by Mandarin and 
English interviews. To help participants adjust their language 
mode for the coming interviews, they had a 5-minute break after 
each interview and watched a 3-minute video in Mandarin or 
English before they started the next task. Interviews were 
conducted in a sound-proof recording booth. An H4N recorder 
was placed about 30 cm away from the participant and was used 
to record the interviews. Each interview was between 6 and 8 
minutes long. Participants also completed a questionnaire about 
their linguistic background. As all the speech data were 
collected on the same day, non-contemporaneous data is not 
available for the current project. Regarding their language 
proficiency, their English proficiency was IELTS (International 
English Language Testing System) score 6-9, the age of 
learning English (AOL) was 1-6 years old (mean = 3), and the 
length of English learning (LOL) was 15-21 years. Regarding 
their Mandarin, the Mandarin AOL was 1-7 years old (mean = 
5), and the Mandarin LOL was 9-21 years. Participants also 
self-reported their daily use of the three languages: on average, 
they used 91% Cantonese, 3% Mandarin and 6% English. To 
gain a comparable proficiency reference for participants’ 
English and Mandarin, a separate set of native speakers of 
English (N = 15) and Chinese Mandarin (N = 20) rated 
participants’ English and Mandarin on a 10-point scale: the 
average rating for their English proficiency was 6.42/10 and for 
their Mandarin was 6.84/10.  

3. Study 1
3.1 Data processing and methods 
Study 1 involves FVC with filled pauses from three languages. 
First, all the filled pauses of -uh in the three interviews were 
segmented by two research assistants and two student helpers 
using Praat [17]. The Cantonese interviews were segmented 
manually by a research assistant who is a native speaker of 
Cantonese, and the Mandarin and English interviews were 
marked by research assistants who are Mandarin-English 
bilinguals. In total, 1204 tokens of -uh including 425 Cantonese 

tokens, 440 Mandarin tokens and 339 English tokens were 
coded. On average, each participant has 19 tokens per language. 
The duration of the vowel was calculated. The formant values 
of F1, F2 and F3 were extracted on the temporal midpoint of 
the vowels. The F0 value was extracted at 10% intervals across 
the vowel, and the average F0 was also calculated. In total, five 
acoustic-phonetic features including midpoint F1, F2, F3, F0 
mean and vowel duration were used as the input for MVKD. 

Midpoint F1, F2, F3, F0 mean and vowel duration were 
used to generate LR-like scores for 21 same-speaker and 210 
different-speaker comparisons for each condition using the 
MVKD approach [12]. Due to the limited number of speakers, 
cross-validation was implemented. Scores were then calibrated 
using cross-validated logistic regression [18]. As non-
contemporaneous data were not available, within-language 
comparisons were not tested. 18 language mismatch conditions 
with single and mixed language as background populations 
were tested (see Table 1 for details). To fully test the mismatch 
conditions, the languages used by the nominal offender (KS) 
and the nominal suspect (QS) were switched and tested. For 
each mismatch condition, different combinations of features 
were tested (i.e. F0 + duration + F1 + F2 + F3, duration + F1 + 
F2 + F3, F0 + F1 + F2 + F3, F0 + duration, F1 + F2 + F3, F1, 
F2, F3, F1 + F2, F2 + F3, F1 + F3). System performance was 
evaluated using Cllr and EER (equal error rate). Systems with a 
Cllr value less than 1 provide some discriminative power. The 
lower the Cllr value and EER, the better the system performance. 

3.2 Results 

Figure 1 shows the F1~F2 plot of all the filled pause across 
Cantonese (CAN), Mandarin (MAN) and English (ENG). First, 
the CAN-uhs are distinguished from the MAN-uhs and ENG-
uhs on both F1 and F2 dimensions, suggesting a fronter and 
higher vowel for CAN.  

Figure 1. F1~F2 plot of -uh in the three languages. 

Phonetic transcription of the CAN-uh includes variants like [ɛ] 
and [ə]. Second, MAN-uhs and ENG-uhs are largely 
overlapped, and their phonetic transcriptions include variants 
along [a]~ [ə]. 

Among the 11 combinations of parameters, F1 and F1 + F3 
consistently showed the best performance compared to other 
conditions. Due to the space limit, only the results of F1 + F3 
for the 18 mismatch conditions are reported in Table 1. Firstly, 
the Cllr value of all the conditions was close to 1, suggesting that 
models using filled pauses as input performed poorly in cross-
language FVC. This is also reflected in high EERs, indicating 
high discrimination error. Second, including both languages in 
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the background population does not seem to increase the 
performance compared with using a single language in the 
background population. Third, the best performance was found 
in the condition where Mandarin was used as the nominal 
suspect (QS) and the background population, and English was 
used as the nominal offender (KS, Cllr = 0.81, EER = 28.8%). 
This might be due to the similar vowels that these trilingual 
speakers used in their filled pauses of English and Mandarin, 
resulting in a lower within-speaker variability, as shown in 
Figure 1.  

Table 1. Summary of MVKD models of filled pauses -uh 
(parameters = F1 + F3 of vowel midpoint) 

4. Study 2
4.1 Data processing and methods 
Interview data of the same 21 female participants in Study 1 
were used in Study 2. Two samples of 30-second speech were 
extracted from their interviews in three languages for each 
speaker. In total, 126 samples were used as input for the ASR 
system. The commercial x-vector ASR system, Phonexia Voice 
Inspector (v.4.0.0), was used for testing. The system extracted 
MFCCs from the 126 samples and generated x-vector speaker 
models for comparison. Six mismatched conditions were tested, 
with Cllr and EER reported in Table 2. In Study 2, 84 same-
speaker (SS) and 1680 different-speaker (DS) scores of each 
condition were generated in the ASR system, and they were 

exported and calibrated using the same cross-calibration 
method in Study 1. Calibration mismatch was not tested in the 
current study.  

4.2 Results 

The ASR results suggest an overall good performance as the Cllr
value of all conditions was lower than 1 and EER was close to 
0.  

4.2.1 Mismatched-language comparisons 
When the KS and QS spoke different languages, the ASR in 
general produced very good performance as the Cllr value of all 
conditions was lower than 1. The lowest EER was found in the 
mixed Cantonese-Mandarin and Mandarin-English conditions, 
with a value of 0.03%. Interestingly, the mixed Cantonese-
English conditions produced the highest EER (0.15%), which 
is five times higher than the other two mixed conditions. It 
seems that the cross-language condition of Cantonese-English 
was more difficult than the conditions of Cantonese-Mandarin 
and Mandarin-English for the ASR system.  

Table 2. Summary of ASR models 
(parameters = MFCC of 30 seconds speech) 

4.2.2 Individual speaker-level analysis 
Following [15], speakers were categorized into one of the four 
animal groups based on their SS-LLR (log likelihood ratio) and 
DS-LLR: doves, who produce the top 25% strongest SS and DS 
LLRs; worms, who produce the bottom 25% lowest SS and DS 
LLRs; phantoms, who produce the top 25% strongest DS and 
bottom 25% lowest SS; chameleons, who produce the top 25% 
strongest SS and the bottom 25% lowest DS LLRs. Doves are 
regarded as the ‘best’ speakers for FVC whereas worms are the 
problematic speakers. Figure 2 summarizes individual 
speakers’ classification across six mismatch conditions.  

There are cases where trilingual speakers were consistently 
in the same category within the zooplot, for instance, HK31 and 
HK35 were grouped as chameleons in most of the mismatch 
conditions, suggesting a language-independent effect for these 
speakers. There are also cases where trilingual speakers were 
categorized into different groups when the languages of QS and 
KS were swapped. For instance, HK2 was a worm when 
comparing Cantonese-QS and Mandarin-KS, but she became a 

Condition QS KS Background Cllr EER 

Mismatch 
CAN + MAN

CAN MAN 
MAN 0.97 47.6% 
CAN 0.99 47.6% 

CAN + MAN 0.97 47.6% 

MAN CAN 
MAN 0.94 42.9% 
CAN 0.97 42.6% 

CAN + MAN 0.95 45.7% 

Mismatch 
CAN + ENG

CAN ENG 
ENG 0.94 44.1% 
CAN 0.94 47.6% 

CAN + ENG 0.94 42.9% 

ENG CAN 
ENG 0.89 37.9% 
CAN 0.87 37.6% 

CAN + ENG 0.89 33.8% 

Mismatch 
MAN + ENG

MAN ENG 
ENG 0.81 33.3% 
MAN 0.81 28.8% 

MAN + ENG 0.80 33.3% 

ENG MAN 
ENG 0.80 32.9% 
MAN 0.81 32.1% 

MAN + ENG 0.80 33.1% 

Condition QS KS Cllr EER 
Mismatch 

(CAN + MAN)
CAN MAN 0.0119 0.03% 

Mismatch 
(CAN + ENG) 

CAN ENG 0.0205 0.15% 

Mismatch 
(MAN+ ENG) MAN ENG 0.0125 0.03% 

Figure 2. Summary of speakers classified as doves (green), worms (purple), phantoms (blue) or chameleons (orange) in all systems. 
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phantom when Cantonese was swapped to the KS. Lastly, there 
are cases where speakers were grouped into different categories 
when the mismatch conditions were different. For example, 
HK45 was a dove when comparing her Cantonese-QS with her 
English-KS, but she became a chameleon when comparing her 
Mandarin-QS with her Cantonese-KS.  

5. Discussion
The study tested acoustic-phonetic and ASR approaches on 
cross-language FVC of Cantonese-English-Mandarin trilingual 
speakers from Hong Kong. Results suggest that the ASR 
models performed well in FVC when the nominal offender (KS) 
and the nominal suspect (QS) spoke different languages.  

5.1 The performance of the two systems 

On the one hand, using around 30s of speech, the ASR system 
had rich speech material with high variability which allowed it 
to capture more individual variations. The ASR systems also 
captured MFCCs which are high-dimensional features, 
resulting in a low EER in the FVC results. On the other hand, it 
is not surprising that the acoustic-phonetic approach using filled 
pauses gained a poor performance in cross-language FVC when 
it only used around 3 seconds of speech for each speaker per 
language. The MVKD models used in the acoustic-phonetic 
approach only had formant values of vowel midpoint of -uh as 
the input features. Adding other dimensions of filled pauses 
such as F0 mean and vowel duration to the MVKD models did 
not increase the model performance, suggesting that using filled 
pauses alone limits the model performance. 

Given the different amounts of data used in the ASR system 
and the acoustic-phonetic approach, a direct comparison of the 
two systems is not encouraged. However, the presentation of 
the results of the two systems can shed light on forensic speech 
studies which explore the fused system of an ASR system and 
acoustic-phonetic system [19-23]. For instance, [20] found that 
the ASR system did not outperform the linguistic-phonetic 
system which was trained on vowel formant values of filled 
pauses -um. A promising improvement was also found when the 
ASR system and the filled pauses-based acoustic-phonetic 
system were fused.  Although this project did not present a 
fused system for system comparison, this is one of the 
directions for future research.  

5.2 The language effect 
Among the MVKD filled-pause models, although the overall 
performances were poor, the conditions of mixed Mandarin-
English still had the lowest EER (between 28.8% and 33.3%) 
compared to the other mixed conditions. This between-
language effect can be explained by the acoustic analysis of 
vowels in filled pauses in the three languages. Acoustic results 
suggested that these trilingual speakers tend to use similar 
vowels in their Mandarin and English-filled pauses, and their 
Cantonese-filled pauses used more fronted vowels as shown in 
Figure 1. Findings in [16] suggest that these Hong Kong 
trilingual speakers predominantly used [ɛ] (82%) in their CAN-
uh, but they mostly used [a] in their MAN-uh (81%) and ENG-
uh (85%). As these speakers used similar vowels in their L2 
(English) and L3 (Mandarin), the within-speaker variability is 
likely to be lower in the Mandarin-English condition.  

A language effect was also observed in the ASR results – 
albeit overall performance was extremely good across all sets 
of tests. The EER in the mismatch Cantonese-English 

conditions was five times higher (0.15%) than the mismatch 
conditions of Cantonese-Mandarin (0.03%) and Mandarin-
English (0.03%). One possibility is that these trilingual 
speakers’ Cantonese and English are more distinct compared to 
the pairs of Cantonese-Mandarin, and Mandarin-English. For 
the former comparison, Cantonese and Mandarin share very 
similar phonological systems, as they are Chinese varieties. The 
cross-language variability would likely be lower for the 
Mandarin-Cantonese condition. For the latter comparison, 
Mandarin and English are L2 and L3 for these Hong Kong 
trilingual speakers. One possibility is that these trilingual 
speakers use similar articulatory settings when speaking their 
L2 and L3, resulting in a low cross-language variability for 
Mandarin and English comparisons. For instance, [24] found 
that Dutch-Turkish bilinguals had similar LTF2 (long-term 
formant) and LTF3 means for Dutch and Turkish. [10] found a 
similar LTFD1 for the two languages of English-French 
bilinguals. [25] found that Canadian Cantonese-English 
bilinguals have similar spectral properties and lower-
dimensional structure in their acoustic voice variation in their 
English and Cantonese. These studies all demonstrate some 
language-independent effects. Maybe for these trilingual 
speakers, the language-independent effects are not between L1 
and L2/L3, but between L2 and L3, as shown in the phonetic 
analysis of filled pauses in Figure 1. Note that although there is 
a between-language effect for Cantonese-English conditions, 
the ASR system still performed very well with a Cllr value of 
0.0205. In other words, although the trilingual speakers 
presented some cross-language variations, the ASR system can 
still handle such variations very well in the system.  

5.3 Speaker classification 
The individual-level analysis shown in Figure 2 suggests that 
52% of the participants (11 out of 21) were categorised as the 
same group across at least two different mismatch conditions, 
suggesting a consistency of membership for the majority of the 
trilingual speakers. To explore whether individual patterns were 
related to the speakers’ linguistic backgrounds, further 
examinations were conducted. HK21 was consistently 
identified as a worm, suggesting that she was a problematic 
performer in all conditions. Her English proficiency was rated 
as 8.8/10, but her Mandarin proficiency was only 5.1/10. She 
used English orally in 20% of her daily life, while most of the 
other participants only reported 0 to 10% of oral English use. In 
a different case, HK38 was classified as a dove when comparing 
her English with her Mandarin. She had relatively low 
proficiency in both her English (4.3/10) and Mandarin (4.5/10). 
Based on these limited observations, we suspect that trilingual 
speakers’ proficiency in their L2 and L3 might affect how well 
they perform in cross-language FVC. If trilingual speakers’ L2 
and L3 proficiencies are both relatively low, they might receive 
similar influence of L1 transfers, leading to a smaller cross-
L2/L3 variability which would facilitate FVC as in the case of 
HK38. If either their L2 or L3 proficiencies are high, trilingual 
speakers might have developed a distinct articulatory setting for 
their L2 or L3, therefore cross-L2/L3 variability would be 
larger, like in the case of HK21. As there isn’t a clear pattern in 
the current study, more studies will be needed to test this 
hypothesis.   
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