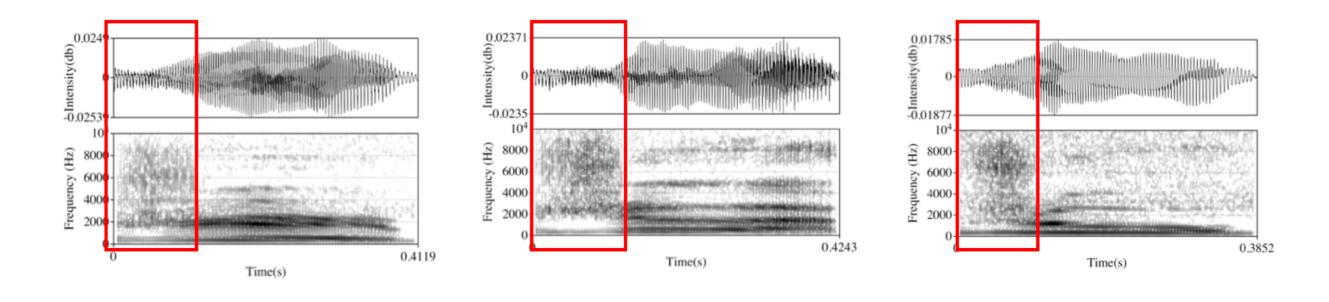


Articulatory and acoustic features of Mandarin rhotics: an ultrasound study

a The Chinese University of Hong Kong, Hong Kong SAR, China b City University of New York, New York, USA c Yale University, New Haven, CT, USA d Haskins Laboratories, New Haven, CT, USA

INTRODUCTION


Background:

- English /1/ can be articulated with various tongue shapes with minimal acoustic consequence (Delattre and Freeman, 1968; Westbury et al., 1998; Twist et al., 2007; Zhou et al., 2008; Mielke et al., 2010).
- The continuum of tongue variation is usually roughly categorized as retroflex and bunched tongue shapes.
- Nearly the entire literature on the articulatory variation has been focused on English /1/. • **Research questions**:
- Can articulatory variation be found in Mandarin /1/ sound?
- Is the articulation of Mandarin /1/ affected by syllable position and vowel context?

ACOUSTIC FEATURES OF MANDARIN / J/

Haskins Laboratories

- Frication noise was only observed in prevocalic /1/, but never in syllabic and postvocalic /1/. ullet
- Frication noise was found in many prevocalic /1/ tokens, but not all tokens.
- Frication noise was more often observed when /1/ is followed by high vowels (/1 u/) than the \bullet two allophones of the low vowels /a/([a] and [a]).

Is frication noise a consistent component for prevocalic /1/?

METHOD

Participants: 1) 18 native Mandarin speakers (4M,15F) who naturally speak with a rhotic accent of Mandarin 2)16 native American English speakers (5M, 11F) Stimuli: Mandarin and English words with /1/ sound

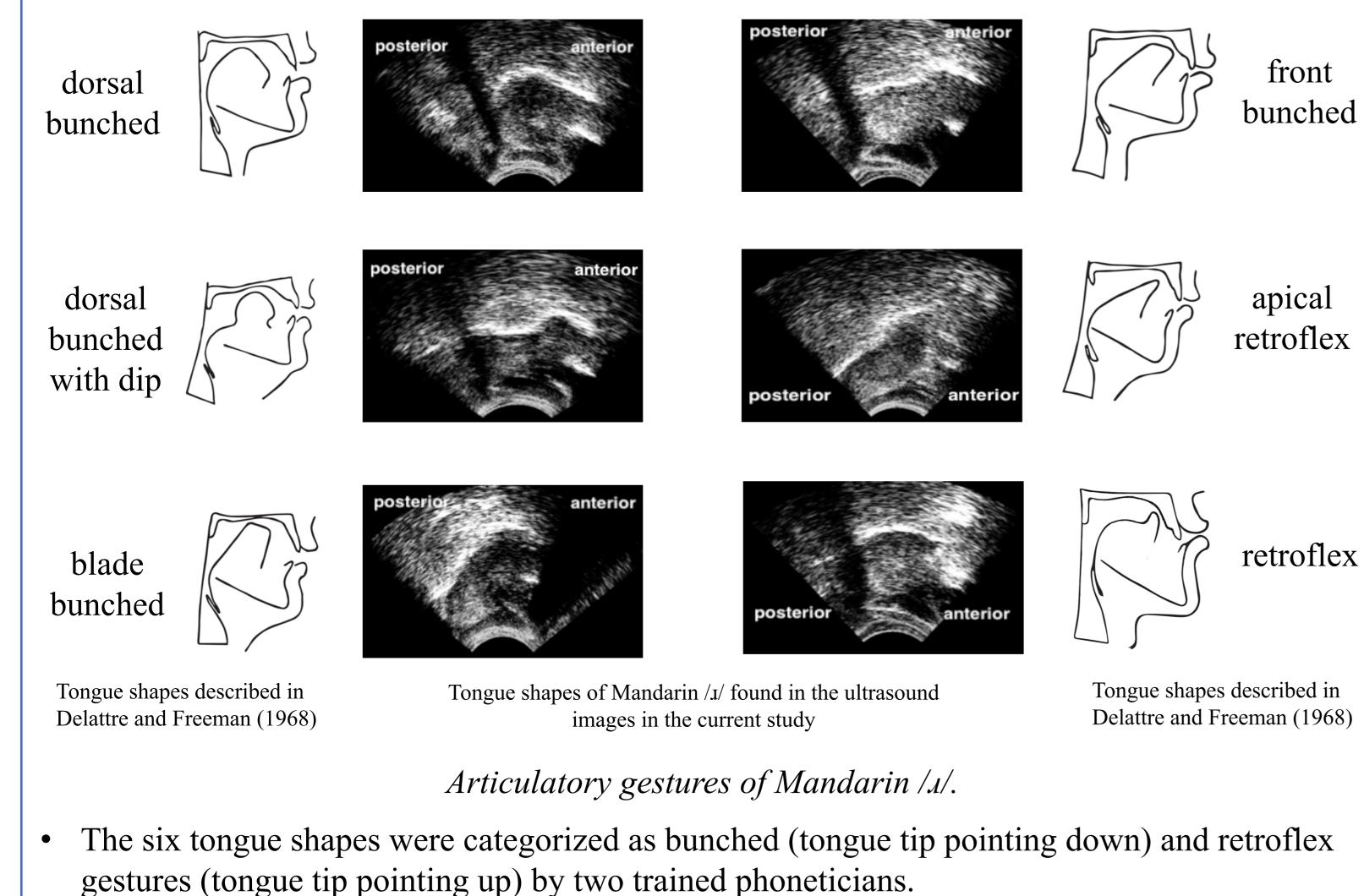
Syllable positions	Vowel contexts	Sample words		
		/rl/ 'sun' 日		
		/rx/ 'hot' 热		
Prevocalic	八 a r u/	/ru/ 'enter' 入		
		/ran/ 'but' 然		
		/raŋ/ 'allow' 让		
		/snr/ 'thread' 丝儿		
Postvocalic	/i 1 l y u a x/	/tslr/ 'branch' 枝儿		
		/yr/ 'fish' 鱼儿		
		/』/ 'son' 儿		
Syllabic		/」/ 'ear' 耳		
		/ ./ 'two' 二		

Table 1. Sample words for the Mandarin stimuli

Procedure: Participants read the target words in their native languages while being recorded with ultrasonic machines. Some speakers were recorded with Siemens ACUSON X300 system, some with EchoB ultrasound machine together with the Articulate Assistant Advanced (AAA) software.

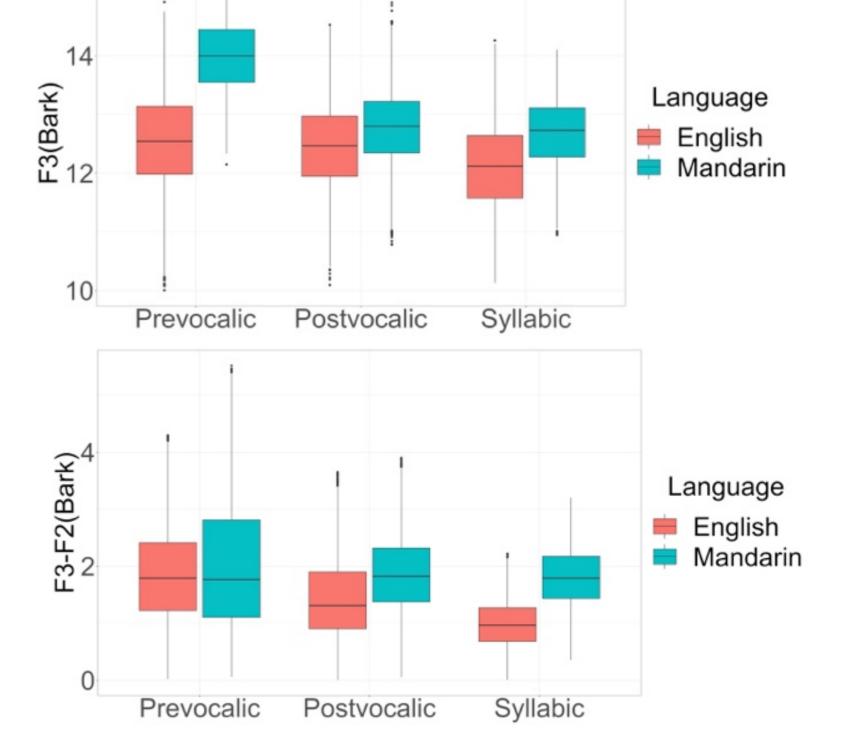
ARTICULATORY FEATURES OF MANDARIN / J/

Similar to English /1/, Mandarin /1/ can be produced with various tongue shapes.


Waveforms and spectrograms of prevocalic /1/ in various vowel contexts by Speaker W10.

Speakers	/\/ Mandarin apical vowel	/u/		/a/			
			/x/	[a]	[a]		
M1	+	+	+	+ +			
W1	some tokens	some tokens			_		
M2	+	+	+	+	+		
W2	+	+	+				
M3	+	+	+	+ _			
W3	+	+	+	+	+		
W4	+	+	+				
W5	some tokens	some tokens	+	– some toke			
W6	+		some tokens				
W7	+	+	+	some tokens	some tokens		
W8	+	+	+	+	some tokens		
W9	+	+	+	+	+		
W10	+	+	+	+	some tokens		
W11		some tokens	+	some tokens			
W12	+	+	+		some tokens		
W13	+	some tokens	some tokens				
M4	+	some tokens	+	+	+		
W14	+	+	+		some tokens		

Table 3. Summary of frication observed in Mandarin prevocalic /1/ (+ indicates the presence of frication; – indicates absence of frication; "some tokens" means that frication could be found in *some repetitions)*



- Mandarin prevocalic /1/ were articulated with only bunched tongue shapes in our data.
- Each speaker used the same gesture (bunched or retroflex gesture) in the syllabic and postvocalic position
- The tongue shape of Mandarin /1/ was not influenced by vowel contexts

Formant patterns

- No significant differences between ulletbunched and retroflex speakers in the first three formants of /1/ sound.
- Mandarin /1/ has a significantly ullethigher F3 than English /1/ in prevocalic and syllabic position.
- The F3-F2 of Mandarin /1/ was significantly higher than that of English in all syllable positions

DISCUSSION AND CONCLUSIONS

- Like English /1/, Mandarin /1/ can be articulated with various tongue shapes.
- Our data showed that Mandarin prevocalic /1/ was articulated with only bunched gestures, while syllabic and postvocalic /1/ could be produced with either the retroflex or bunched gestures.
- The tongue shape of Mandarin /1/ was not influenced by vowel contexts
- Mandarin /1/ had a higher F3-F2 values than English /1/ in all syllable positions and a higher F3 in prevocalic and syllabic positions, which indicates that Mandarin /1/ is less rhotic than the one in English.

	Prevocalic	Syllabic	Postvocalic						1	
Participants		/u/	/i/	/1/	//	/y/	/u/	/a/	/x/	
M1	Bunched	Retroflex		•	R	etrofl	ex		•	
W1	Bunched	Retroflex	Retroflex							
M2	Bunched	Retroflex			R	etrofl	ex			
W2	Bunched	Retroflex	Retroflex							
M3	Bunched	Bunched	Bunched							
W3	Bunched	Bunched	Bunched							
W4	Bunched	Retroflex	Retroflex							
W5	Bunched	Retroflex	Retroflex							
W6	Bunched	Bunched	Bunched							
W7	Bunched	Bunched	Bunched							
W8	Bunched	Bunched	Bunched							
W9	Bunched	Retroflex	Retroflex							
W10	Bunched	Bunched	Bunched							
W11	Bunched	Bunched	Bunched							
W12	Bunched	Bunched	Bunched							
W13	Bunched	Retroflex	Retroflex							
M4	Bunched	Bunched	Bunched							
W14	Bunched	Bunched	Bunched							

Our data suggested that it might be more appropriate to categorize Mandarin prevocalic rhotic \bullet sound as an approximant with an optionally fricated onset rather than a fricative because it lacks the consistent presence of frication noise which is the most salient feature of fricatives.

Acknowledgments: This study is supported by the Global Scholarship Programme for Research Excellence scholarship from the Chinese University of Hong Kong, and NIH grant DC-002717 to Haskins Laboratories.

Selected references

- Delattre, P., & Freeman, D. C. (1968). A dialect study of American R's by X-ray motion picture. *Linguistics*, 6(44). https://doi.org/10.1515/ling.1968.6.44.29
- Mielke, J., Baker, A., & Archangeli, D. (2010). Variability and homogeneity in American English/r/allophony and/s/retraction. Laboratory Phonology, 10, 699-730.
- Twist, A., Baker, A., Mielke, J., & Archangeli, D. (2007). Are "Covert" /1/ Allophones Really Indistinguishable? University of Pennsylvania Working Papers in Linguistics, 13(2).
- Westbury, J. R., Hashi, M., & Lindstrom, M. J. (1998). Differences among speakers in lingual articulation for American English /r/. Speech Communication, 24.
- Zhou, X., Espy-Wilson, C. Y., Boyce, S., Tiede, M., Holland, C., & Choe, A. (2008). A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/. The Journal of the Acoustical Society of America, 123(6), 4466–4481.