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Sensor-level ERF, TFR and connectivity analyses

Introduction

In this tutorial, we will provide an overview of several sensor-level analyses to help you get started
working with FieldTrip. We will work on a dataset((Schoffelen, Poort, Oostenveld, & Fries (2011)
Selective Movement Preparation Is Subserved by Selective Increases in Corticomuscular Gamma-
Band Coherence. J Neurosci. 31(18):6750-6758)) collected during an experiment where subjects
were instructed to fixate on a screen. Each trial started with the presentation of a cue pointing either
rightward or leftward. This cue indicated which hand the subject had to use for the trial's response.
Next, the subjects were instructed to extend both their wrists. After a baseline interval of 1s, an
inward drifting grating was visually presented. Then, after an unpredictable delay, the stimulus
changed speed, after which the subjects had to increase their wrist extension on the one cued side
only. This experimental design is illustrated in Figure 1. Magneto-encephalography (MEG) data was
collected using a 151-channel CTF system. Also, electromyography (EMG) data was collected from
electrodes attached to the bilateral musculus extensor carpi radialis longus.
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Figure 1: illustration of the experimental paradigm.



Hyperscanning system
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Dense array EEG provide similar Network analysis result as £ 5% @ W & % w0
MEG, but more suitable to clinical bedside ‘ '
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Types of Connectivity

* Structure connectivity

anatomical connections

* Functional connectivity
Statistical correlations between activity in different brain regions

e Effective connectivity



connectivity

(Bullmore and Sporns, Nature, 2009)
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Parameters

Pearson,Spearman

Covariance, correlation, coherence
PLV PLS, PLI, IMC, WPLI, dWPLI
Granger causality

Mutual information

Functional connectivity

Non-directed

Directed

Cross-correlation, Transfer
Granger causality entropy

urewop awi |

Coherence,
Phase Locking Value

Pairwise Phase Consistency

Phase Slope Index
Parametric and Nonparametric
Granger Causality
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Coherence(Rosenberg 1989)

Sxx (f) : autospectrum of Xat frequency f

Syy (f) : autospectrum of Yat frequency f

Sxy (f) : cross - spectrum of X and Yat frequency f
Sxy (f)

VS (D - Srr ()

Coherence(f) =

Coherence-the frequency domain
equivalent to
the time domain cross-correlation

function

Prog. Bioplgs. molec. Biol., Vol. 53, pp. 1-31, 1989. 0079-6107/89 $0.00 + .50
Printed in Great Britain. All rights reserved. © 1989 Pergamon Press plc
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Coherence or

Cross Spectrum

Si(f) = ()i ()

Coherency
: Sii(f)
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Network analysis to evaluate result after

stroke (Jennifer Wu, 2015

Connectivity measure
are robust biomarker
of cortical function and
plasticity after stroke

Motor status (FM)

03 04 05 06
ipsilesional M1-PM beta coherence

P =0.009
R?=0.51

A JOURNAL OF NEUROLOGY

Connectivity measures are robust biomarkers
of cortical function and plasticity after stroke

Jennifer Wu,"? Erin Burke Quinlan,'? Lucy Dodakian,? Alison McKenzie, 2
Nikhita Kathuria,? Robert ). Zhou,? Renee Augsburger,z Jill See,? Vu H. Le,?
Ramesh Srinivasan® and Steven C. Cramer'?

Valid biomarkers of motor system function after stroke could improve clinical decision-making. Electroencephalography-based
measures are safe, inexpensive, and accessible in complex medical settings and so are attractive candidates. This study examined
specific electroencephalography cortical connectivity measures as biomarkers by assessing their relationship with motor deficits
across 28 days of intensive therapy. Resting-state connectivity measures were acquired four times using dense array (256 leads)
electroencephalography in 12 hemiparetic patients (7.3 + 4.0 months post-stroke, age 26-75 years, six male/six female) across 28
days of intensive therapy targeting arm motor deficits. Structural magnetic resonance imaging measured corticospinal tract injury
and infarct volume. At baseline, connectivity with leads overlying ipsilesional primary motor cortex (M1) was a robust and specific
marker of motor status, accounting for 78% of variance in impairment; ipsilesional M1 connectivity with leads overlying ipsile-
sional frontal-premotor (PM) regions accounted for most of this (R*=0.51) and remained significant after controlling for injury.
Baseline impairment also correlated with corticospinal tract injury (R?= 0.52), though not infarct volume. A model that combined
a functional measure of connectivity with a structural measure of injury (corticospinal tract injury) performed better than either
measure alone (R”=0.93). Across the 28 days of therapy, change in connectivity with ipsilesional M1 was a good biomarker of
motor gains (R*= 0.61). Ipsilesional M1-PM connectivity increased in parallel with motor gains, with greater gains associated with
larger increases in ipsilesional M1-PM connectivity (R*=0.34); greater gains were also associated with larger decreases in
M1-parietal connectivity (R*=0.36). In sum, electroencephalography measures of motor cortical connectivity—particularly be-
tween ipsilesional M1 and ipsilesional premotor—are strongly related to motor deficits and their improvement with therapy after
stroke and so may be useful biomarkers of cortical function and plasticity. Such measures might provide a biological approach to
distinguishing patient subgroups after stroke.



PLV and PLS ( Jean 1999

¢ Human Brain Mapping 8:194-208(1999) -

Measuring Phase Synchrony in Brain Signals

Jean(Laboratmre de NCUI'OSCICHCC COngIlltheS et Imagerle ): Jean-Philippe Lachaux, Eugenio Rodriguez, Jacques Martinerie,
and Francisco J. Varela*
* Unlike the more traditional method of spectral coherence, PLS separates the Laboratoire de Neurosciences Cognitives et Imagerie Cérébrale, CNRS UPR 640
phase and amplitude components and can be directly interpreted in the Hopitalae.La Salpctricre, Ravis) Jeance

framework of neural integration.

4 4

e We also apply PLS to investigate intracortical recordings from an ep||ept|c patient Abstract: This article presents, for the first time, a practical method for the direct quantification of

performing a visual discrimination task. We find large:scale synchronies in the — imsteneypesitc nchromaton e it phase lockin) btwcen v sesosecrc sl e
gamma band (45 _HZ)I egbl between hlppocampus and fronta gyrusl and Iocal mechanism for long-range neural integration during cognitive tasks. The method, called phase-locking
SynCh ronleS,Wlth N a ||m IC reglon, a feW cma pa rt. statistics (PLS), measures the significance of the phase covariance between two signals with a reasonable

time-resolution (<100 ms). Unlike the more traditional method of spectral coherence, PLS separates the
phase and amplitude components and can be directly interpreted in the framework of neural integration.
To validate synchrony values against background fluctuations, PLS uses surrogate data and thus makes no

_ H H _ a priori assumptions on the nature of the experimental data. We also apply PLS to investigate intracortical
* We d rgu e th at .\Nherea.s Iong Sca Ie effe cts do reﬂeCt Cogn.ltlve proceSSI ng’Short recordings from an epileptic patient performing a visual discrimination task. We find large-scale
scale synchronies are likely to be due to volume conduction. synchronies in the gamma band (45 Hz), ez, between hippocampus and frontal gyrus, and local synchronies,

within a limbic region, a few cm apart. We argue that whereas long-scale effects do reflect cognitive processing,
short-scale synchronies are likely to be due to volume conduction. We discuss ways to separate such conduction
effects from true signal synchrony. Hum Brain Mapping 8:194-208, 1999.  ©1999 Wiley-Liss, Inc.

Key words: neural synchrony; phase-locking; coherence; EEG; EcoG; epilepsy; gamma-band; deblurring

L 4 *




Why not Coherence

1. Coherence can only be applied to stationary signals

2. Coherence does not specifically quantify phase-relationships



Phase synchronization

reasonable neural explanation
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PLV and PLS ( Jean 1999)

e Step 1. band-pass filter

VR
ror= e v~ 0w e Step2 . Wavelet convolution
G(t, f) = exp | ——;| exp {j2mwft}.
* Step3 PLV
1 N
PLV,=—|>, exp (jo(t, n))
N n=1




Autism classification from EEG-based network

. . pe . . Classification of Autism Spectrum Disorder from EEG-based Functional Brain
Autism classification using network and Connectivity Analysis %

mac h in e I earn in g Noura Alotaibi , Koushik Maharatna

> Author and Article Information
Neural Computation 1-27.
https://doi.org/101162/neco_a_01394  Article history €

Electrode number (i)

Abstract

Hilbert transform [ | a;; = exp (J {0;(t.n) — O4(t.n)})
o Instantaneous J

Autism is a psychiatric condition that is typically diagnosed with behavioral assessment methods. Recent

phase

2
]
[

years have seen a rise in the number of children with autism. Since this could have serious health and
socioeconomic consequences, it is imperative to investigate how to develop strategies for an early
diagnosis that might pave the way to an adequate intervention. In this study, the phase-based functional
brain connectivity derived from electroencephalogram (EEG) in a machine learning framework was used

PLVIE,) to classify the children with autism and typical children in an experimentally obtained data set of 12

autism spectrum disorder (ASD) and 12 typical children. Specifically, the functional brain connectivity

k : | oz networks have quantitatively been characterized by graph-theoretic parameters computed from three

PLV(t, vos | wue | * . Electrode number (i)

12 E proposed approaches based on a standard phase-locking value, which were used as the features in a

machine learning environment. Our study was successfully classified between two groups with

PLVs for whole-length

PV (t) = = |EX.  exp (J (0, (ty.m) = 0y(tym)))|

approximately 95.8% accuracy, 100% sensitivity, and 92% specificity through the trial-averaged phase-

e = [ T = s " el g ‘r locking value (PLV) approach and cubic support vector machine (SVM). This work has also shown that

=2 significant changes in functional brain connectivity in ASD children have been revealed at theta band
using the aggregated graph-theoretic features. Therefore, the findings from this study offer insight into
the potential use of functional brain connectivity as a tool for classifying ASD children.



Neural Connectivity pattern predict Autism

Biological Psychiatry: Cognitive Neuroscience and

electroencephalography oy gnit
£ Neuroimaging
Volume 6, Issue 1, January 2021, Pages 59-69

measures of neural
connectivity at 3 months
of age predict autism Architval Repoit

symptoms at 18 months Multivariate Neural Connectivity Patterns in
Early Infancy Predict Later Autism Symptoms

Abigail Dickinson 2 &, Manjari Daniel 2, Andrew Marin 9, Bilwaj Gaonkar °, Mirella Dapretto ¢, Nicole M.

McDonald ?, Shafali Jeste 2
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* The problem of volume-conduction is especially large
Volume condution for scalp EEG and MEG data, because of their low

* spatial resolution.

A) Connectivity: OK B) Connectivity: NOT OK C) Connectivity: NOT OK

Figure 25.2

Illustration of the danger of volume conduction for interpreting interelectrode connectivity results. The
black/gray rings represent electrodes, the black arrow between them illustrates measured connectivity,
the stars represent neural sources in the brain, and the white arrows represent the path of electrical or
magnetic activity from those sources. Ideally (panel A), each electrode measures only neural activity
below the electrode, and thus, connectivity between two electrodes reflects connectivity between two
physically distinct brain regions. Unfortunately, however, this situation cannot be assumed for EEG
analyses: each electrode measures activity from overlapping brain regions (panel B), thus leading to the
possibility that connectivity between two electrodes simply reflects those electrodes measuring activity
from the same brain source. Furthermore, electrical fields can spread tangentially through the skull/
scalp, causing further concern for EEG connectivity analyses (panel C).
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Figure 6.
Simulation of an EEG and its corresponding ECoG. Two radial dipoles were placed in symmetric positions in the (T7-Cz-T8) plane,
containing both ears and the head’s vertex (c). EEG generated by these dipoles was computed, and ECoG reconstructed using a
deblurring technique. (a) EEG cartography for two dipoles with same amplitude (b) corresponding ECoG. (d) EEG and ECoG
contributions of each dipole as a function of laterality along a T7-Cz-T8 axis.




Perfect synchronization

Synchronization with
time lag

No Synchronization
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Common reference

 Mathematically similarly, for EEG one always needs a reference. If
this reference is the same for the electrode pairs being studied, it can
contribute significantly to the coherence, and thus, relative power
changes may also affect coherencies without reflecting a change in
coupling (Fein et al., 1988; Florian et al., 1998 ).



solution

* 1 inverse solution
* 2 Laplacian

* 3 parameters not sensitive to VC and Ref



Imaginary part of coherency

* Nolte(2004, Human Motor
Control Section, NINDS, NIH,)

:The main obstacle in interpreting EEG/MEG
data in terms of brain connectivity is the
fact that because of volume conduction,the
activity of a single brain source can be
observed in many channels. Here, we
present an approach which is insensitive to
false connectivity arising from volume
conduction.
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ELSEVIER Clinical Neurophysiology 115 (2004) 2292-2307

www.elsevier.com/locate/clinph

Identifying true brain interaction from EEG data using
the imaginary part of coherency

Guido Nolte™, Ou Bai, Lewis Wheaton, Zoltan Mari, Sherry Vorbach, Mark Hallett

Human Motor Control Section, NINDS, NIH, 10 Center Drive MSC 1428, Bldg 10, Room 5N226, Bethesda, MD 20892-1428, USA
Accepted 17 April 2004
Available online 10 July 2004




IMC(Imaginary part of coherency)

Coherency
P <A1 AzeiA¢>
(AT)(A3)

Imaginationay part

(A1A2 sin Ad)

Ini{e} =
(AT)(A3)

A Imaginary axis

I oy
(xay2) T

Real axis

signal 1 =x1 + iy1=Ae’
signal 2 = x2 + iy2=Aze

Imaginary axis

...... Real axis

signal 1 * conj(signal 2) =
(x1 +iy1) * (x2 - iy2) = (Xixa+y1y2) + i(yixz-y2x1) =
Ae”* Aze™" = A1Ae* )



PLI(stam 2007)

* The major aim of introducing the PLI is to obtain reliable estimates of
phase synchronization that are invariant against the presence of
common sources (volume conduction and/or active reference
electrodes in the case of EEG). the central idea is to discard phase
differences that center around 0.

PLIL,, =|n"Y sgn(imag (Sy:))
=1



PLI(stam 2007)

* To address the problem of volume conduction and
active reference electrodes in the assessment of ~ -
functional connectivity, we propose a novel measur
to quantify phase synchronization, the phase lag PLI = |(sign[Ad(t;)])
index (PLI), and compare its performance to the we
known phase coherence (PLV), and to the imaginary
component of coherency (ImC).

¢ Human Brain Mapping 28:1178-1193 (2007)

* PLI and Plv were more sensitive than ImC to
increasing levels of true synchronization in the model
Phase Lag Index: Assessment of Functional
Connectivity From Multi Channel EEG and MEG

* The PLI performed at least as well as the PLV in With Diminished Bias From Common Sources
detecting true changes in synchronization in model
and real data but, at the same token and like-wise the
ImC, it was much less affected by the influence of | - | -
common sources and active reference electrodes e i ot o N, Rt s o B B, g

4 ; .
“Fraunhofer Institute, Kekulestrafie 7, Berlin, Germany
4Insx‘itun’for Fundamental and Clinical Movement Sciences, VU, Amsterdam, The Netherlands

Cornelis ). Stam,'* Guido Nolte,z'3 and Andreas Daffertshofer®
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Wpli and dwpli(Vinck 2011)

* (i) the presence of a common reference,
e (ii) volume-conduction of source activity, Bias related to difference in sample size

e (iii) the presence of noise sources, and A Coherence asa function ofral number

* (iv) sample-size bias.

1-100Hz)

m from

™'Y |imag (S )| sgn (imag (Sy:))
wPLI,, = —=

If

Coherence (s\

n' 2 |imag (S )|
=1




Coherence and PLV

ImC (Nolte et al., 2004)

PLI (Stam et al., 2007)

WPLI

Construction index
(Existing indices of
phase-synchronization
and The weighted
phase-lag index sections).
Effect of volume-conduction
correlated sources of interest
(Volume conducting correlated
sources of interest section).

Effect of adding volume-conducted,
uncorrelated noise sources
(Addition of uncorrelated, volume-
conducted noise sources section).

Effect of change in phase of
coherency between sources of
interest (Influence of phase of
coherency on WLPI, PLI and
ImC section).

Detecting phase-synchronization.

Uses imaginary and real
part equally.

Strong increase or
decrease, depending on
phase of coherency and
sign volume-
conduction coefficients.
Strong increase or
decrease, depending on
phase of coherency and
volume-conduction
coefficients.

Decrease or increase,
depending on volume-
conduction coefficients.

Strong tendency to
generate false positives,
false positives rate
cannot be controlled.

Expected value of
imaginary component
cross-spectrum,
normalized by expected
value of signals' power.
Increase or decrease,
depending on phase
coherency and volume-
conduction coefficients.

Always decreases,
because signal amplitudes
always increase.

Strong increase or
decrease possible, range
of statistic depends on
phase coherency (see also
Stam et al. (2007)).
Reduced sensitivity in
detection vs. PLI. (Stam et
al,, 2007). False positives
rate controlled.

Consistency of sign of imaginary
component Cross-spectrum.

Unaffected.

Depending on distribution relative
phase, increase (e.g., for some bimodal
or asymmetric distributions) or
decrease (e.g. for symmetric,
unimodal distributions).

Range statistic is always [0,1], PLI only
changes if distribution of sign
imaginary component of cross-
spectrum is affected.

Even without added noise, PLI may fail
to detect phase-synchronization for
bimodal/asymmetric relative phase
distributions. However, false positives
rate controlled.

Expected value of imaginary component
cross-spectrum, normalization by
expected value of magnitude imaginary
component cross-spectrum.

Unaffected.

Decrease, insofar sign of imaginary
component cross-spectrum changes.
Less noise-sensitive than PLI.

Range statistic is always [0,1], WPLI only
changes if distribution of sign imaginary
component of cross-spectrumis affected.

Even without added noise: Steeper
relationship with true phase-consistency
(e.g., as measured by PLV) than PLI,
always detects non-zero coherence,
WPLI estimator has higher z-score than
PLI estimator.




Bedside detect conscious level

doi:10.1093/brain/awx | 63 BRAIN 2017: 140; 2120-2132 |

A JOURNAL OF NEUROLOGY
alpha network metrics were good at

distinguishing UWS versus MCS patients,

relative delta band power averaged overall B rain networks predict metabolism, diagnosis
channels was very good at discriminating

MCS from MCS + patients and prognosis at the bedside in disorders of

delta network centrality consciousness
predicts outcomes

Srivas Chennu,"? Jitka Annel ~ ~ 0; “ oo *E
Helena Cassol,’ Géraldine M - 0000d:
Mohawk software(only support EGI format) David Menon® and Steven Lz - POVDOD..

Does not support lower than 128ch

- - -

—-

r(Participation coeff
)
o
8

0
UWS MCS-MCS+EMCS LS CTRL

However, this analysis of dwPLI-based networks was based
on sensor-level EEG data, and hence references to regions

allude to areas over the scalp rather than specific regions of

underlying brain anatomy.

B Outcome +ve



* Phase Slope Index (Nolte 2008, directed)
* Partial coherence (Rosenberg 1998)

* Pearson,Spearman

 Partial correlation



Real part of coherence-COH

Connectivity analysis to

TMS-EEG study

2.7. EEG Connectivity Analysis. Within Matlab [24], EEG
channels were averaged according to 10 predefined regions
over both hemispheres (see Supplementary Figure S1 for
brain regions and electrodes). Autoregressive models were
calculated for each segment using the mvfreqzm and
mvar.m function implemented within the BioSig toolbox
[23]. The multivariate autoregressive models were calculated

Connectivity Analysis during Rubber Hand Illusion—A Pilot
TMS-EEG Study in a Patient with SCI

Vanessa N. Frey L2 Aljoscha Thomschewski ,1'%3 Patrick B. Langthaler,l’z’3
Alexander B. Kunz ©,"* Yvonne Holler ©,° Eugen Trinka 123
and Raffaele Nardone ©">*¢

Department of Neurology, Christian Doppler University Hospital,

Paracelsus Medical University and Centre for Cognitive Neuroscience, Austria

2Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
Department of Mathematics, Paris Lodron University, Salzburg, Austria

“Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria
°Department of Psychology, University of Akureyri, Akureyri, Iceland
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for all region xregion combinations and for the three
frequency bands of interest (alpha: 7-13 Hz, low gamma: 40-
50Hz, and high gamma: 51-79 Hz) with a model order 15,
chosen in order to adhere to the proposed ratio of 3:1
between given samples and the number of estimates [25].
From the multivariate autoregressive model, we derived two
measures of interaction: ordinary coherence (COH), which is
an undirected measure considering the real part of the
complex-valued coherence [23], and the full frequency
directed transfer function (ffDTF), a directed measure of
interaction normalized with respect to all the frequencies in
the predefined frequency interval [26].

Copyright © 2021 Vanessa N. Frey et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Bodily self-perception is an important concept for several neurological disorders, including spinal cord injury (SCI).
Changing one’s bodily self-perception, e.g., via rubber hand illusion (RHI), induces alterations of bottom-up and top-down
pathways and with this the connectivity between involved brain areas. We aim to examine whether (1) this process can be
manipulated by changing cortical excitability, (2) connectivity between relevant brain areas differ when the RHI cannot be
evoked, and (3) how this projection differs in a patient with SCI. Method. We applied RHI and facilitatory theta burst
stimulation (TBS) on the right primary somatosensory cortex (S1) of 18 healthy participants and one patient with incomplete,
cervical SCI. During RHI, we recorded high-density electroencephalography (HD-EEG) and extracted directed and nondirected
connectivity measures. Results. There is no difference in connectivity between sham and real TBS or in the effectivity of RHIL
We observed a higher laterality in the patient, i.e., higher connectivity of the right and lower of the left hemisphere. Besides this,
connectivity patterns do not differ between healthy participants and the patient. Conclusion. This connectivity pattern might
represent a neuroplastic response in the attempt to overcome the functional impairment of the patient resulting in a similar
overall connectivity pattern to the healthy participants, yet with a higher sensitivity towards RHI and a higher laterality. The
cortico-cortical communication was not altered depending on whether the illusion was provoked or not; hence, the perceptory
illusion could not be observed in the EEG analysis.
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Alzheimer’s disease (AD) is a neurodegener

ative disorder that causes a loss of connections Brain Network AnalySiS of Compressive
between neurons. The goal of this paper is to construct Sensed High-Density EEG Signals in
a complex network model of the brain-electrical activity, AD and MCI Subj ects

using

Nadia Mammone ““, Member, IEEE, Simona De Salvo, Lilla Bonanno “’, Cosimo leracitano

high'denSity EEG (HD'EEG) recorqingss and to _coml_:)are Silvia Marino, Angela Marra, Alessia Bramanti, and Francesco C. Morabito ©, Senior Member,
the network organization in AD, mild cognitive impaired

(MCI), and healthy control (CNT) subjects

N. Mammone et al., “Permutation disalignment index as an indi-
HE incidence of dementia is gradually increasing due to rect, EEG-based, measure of brain connectivity in MCI and AD pa-
T aging world population [1]. Alzheimer’s disease (AD) is tients,” Int. J. Neural Syst., vol. 27, 2017, Art. no. 1750020, doi:
the most common form of dementia as it is estimated to account 10.1142/S0129065717500204.
for 60% of all the dementia cases [1]. Experts postulated that
AD arises with a subtle preclinical stage, develops through an
intermediate amnestic mild cognitive impairment (MCI) stage,
and ends up with a final dementia stage, when cognitive im-
pairment affects the ability to live independently [2]. The early
diagnosis of AD, which would dramatically improve patient’s
treatment, would be possible only if the current diagnostic tools
were improved. High-density EEG (HD-EEG) could make a
significant contribution, thanks to its significantly higher spatial
resolution than standard EEG. Two main features commonly




Laplacian transform

* For EEG data with a spatially dense, controlled arrangement of electrode
positions, the problem of a common reference can be addressed by
computing local Laplacians (i.e., second derivatives of raw potentials),
also known as current—source—density analysis. This approach in essence
removes the effect of a common reference (Nunez and Srinivasan
(2006)).
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Accuracy of surface Laplacian

* In general, having more electrodes is

better. Sixty-four electrodes is a
reasonable minimum, and > 100
electrodes will provide more
accurate results

* use individual skull shape and
precise electrode positions to
improve the accuracy of surface
Laplacian

Electrical Geodesics, Inc. Technical Note

Theory and Calculation of the Scalp Surface Laplacian

Thomas C Ferree and Ramesh Srinivasan
August 24, 2000

This note describes in physical terms the motivation for using the scalp surface Laplacian in
EEG research. It also describes two algorithms for its computation. We do not consider the so-
called Hjorth surface Laplacian (Hjorth, 1975) because, despite its frequent mention in EEG
research, the Hjorth algorithm for calculating the two-dimensional second derivative is valid
only for evenly spaced data points falling on an orthogonal Cartesian grid (Press et al., 1992).
This is not the case for conventional EEG electrode arrays, which seek even spacing but do not
generally follow a Cartesian grid (Tucker, 1991). Instead, we describe the calculation of the
surface Laplacian based upon two common methods of spline interpolation: the spherical splines
(Perrin et al., 1989; 1990) and the three-dimensional thin-plate splines (Perrin et al., 1987; Law
etal., 1993). Each method is described in detail in the EGI Technical Note
Splinelnterpolation.pdf, and this note assumes knowledge of that material.



Source VS Sensor

e sensor level (No) 2  Source Level (Yes)

The future

e sensor level (No) 2  Source Level (Yes)

* Low spatial resolution(No) = dense array EEG (Yes)
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Our principal research interest is the organization and the dynamics of the large-scale neuronal networks
of the human brain that characterize mental functions, and the understanding of disturbances of these
networks in patients with brain dysfunctions. Electromagnetic imaging based on high-resolution EEG is
our principal instrument to study these questions. Our group is working on the development of spatio-
temporal signal analysis techniques that allow to characterize neuronal electric activity in time and
space. By integrating these data into realistic head models based on the anatomical MRI, information
flow within the individual brain can be visualized. In order to enhance spatial resolution, other functional
imaging techniques, in particular functional MRl are included. Besides the combination of
electromagnetic and haemodynamic brain imaging techniques, our research projects also integrate direct
intracranial recordings in epileptic patients, neuropsychology and lesion studies as well as transcranial

magnetic stimulation. We consider this multidisciplinary approach as essential for understanding the
brain mechanisms underlying human mind and the disturbances and repair possibilities of these
mechanisms. Our main cognitive neuroscience research areas are: visual and auditory perception, visuo-

motor integration, multisensory interaction, language, memory and emotion. The major clinical
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Subcortical electrophysiological activity is
detectable with high-density EEG source imaging

Martin Seeber® !, Lucia-Manuela Cantonas', Mauritius Hoevelsz, Thibaut Sesiaz, Veerle Visser-Vandewalle? &
Christoph M. Michel'3

Subcortical neuronal activity is highly relevant for mediating communication in large-scale
brain networks. While electroencephalographic (EEG) recordings provide appropriate tem-
poral resolution and coverage to study whole brain dynamics, the feasibility to detect sub-
cortical signals is a matter of debate. Here, we investigate if scalp EEG can detect and
correctly localize signals recorded with intracranial electrodes placed in the centromedial
thalamus, and in the nucleus accumbens. Externalization of deep brain stimulation (DBS)
electrodes, placed in these regions, provides the unique opportunity to record subcortical
activity simultaneously with high-density (256 channel) scalp EEG. In three patients during
rest with eyes closed, we found significant correlation between alpha envelopes derived from
intracranial and EEG source reconstructed signals. Highest correlation was found for source
signals in close proximity to the actual recording sites, given by the DBS electrode locations.
Therefore, we present direct evidence that scalp EEG indeed can sense subcortical signals.
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Abstract

Objective: Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brain’s large-scale
neuronal circuits. However, most EEG applications fail to capitalize on all of the data’s available information, particularly that concerning
the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called
inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain
at every moment in time can be accurately localized.

Methods and Results: Here, we review the different EEG source localization procedures applied during the last two decades.
Additionally, we detail the importance of those procedures preceding and following source estimation that are intimatelv linked to a
successful, reliabl
algorithms, (3) the Left Mastoid Reference Fz Reference POz Reference Average Reference
the statistical anal
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ncurosciences.
© 2004 Internatio

Keywords: EEG; So

PV BLLY
Y r PeeeeRPP?
DD i PR PPPRODW
L EE TR T DT
PYOVOLEE 0 ==

G
—®
—9)
)
—6)

- 8 ¢

> —

0 50 1 150 200 250ms

magstim



Accuracy of Source Localization(Michel 2003)

* Enough number of Electrodes
e Even distribution of elecctrodes
* Accurage electrode position

* Algorithem(Loreta, Sloreta, MN...)

Dense Array EEG
EGI& % EXER

* Individual head model
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EEG source connectiviry ( Hassan
(IEEE Signal Processing Magazine )
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source connectiviry analysis and its ™
application in clinical area.

Patients
and/or 8
Healthy (s
Subjects 2
Reference Network Identified Network g
. Network Similarity? Jy ——
e RS Task-Free (Resting State)/ &
B e (<) {— e Task-Related Paradigm £
- e 5 > Q
.’\ i .4. " j\\ X 8
Simulated Epileptic Spikes Dipole Orientation -
— R ©
250 ms (a) and Location L
2
S| | (PP RS Functional ©
Forward Source 1 Connectivity and n
Problem Network Analysis
3 -
b -
1 0 -
3 x - e "o -
Simulated Scalp EEG Reconstructed Brain Sources -E‘o_ 3 7”9 o o (o)
= -
Source n a0 2 < o ¢ g
256 Channels Regional Time g ©
Series >
Clinical Tests
— Inverse Abnormal i
Problem .
X 68 ROIs
(d) (c)

Time (s) Time (s)



V

ol
A
M}
_‘: /
ys%

WMNE

<réd

LORETA

&

SLORETA

- ———
e e -

<

LClnssk

al EEG montage

——————————————

sLORETA

A
.Y
v -
AR
. «
T ——————————————

- —

l EEG generation modil

Segmentation 3D mesh conduction
MRI location & orientation model

] EEG signals [

matrix

Lead Field <::I’

[ Source reconstruction

— - Classical
xiiﬁ,:!," 5 4ok kapn a montages AINE. \\’I\H\Ih.
" : | : LORETA, sSLORETA
4i - ! [ h:,‘.
ik i :> he-FEG 7

256 Electrodes Typical Recordings

/

OPEN 8 ACCESS Freely available online @PLOS | ONE

EEG Source Connectivity Analysis: From Dense Array
Recordings to Brain Networks

Mahmoud Hassan'?*, Olivier Dufor?, Isabelle Merlet'?, Claude Berrou®, Fabrice Wendling'?
1INSERM, U642, Rennes, France, 2 Université de Rennes 1, LTSI, Rennes, France, 3 Télécom Bretagne, Institut Mines-Télécom, UMR CNRS Lab-STICC, Brest, France

Abstract

The recent past years have seen a noticeable increase of interest for electroencephalography (EEG) to analyze functional
connectivity through brain sources reconstructed from scalp signals. Although considerable advances have been done both
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Electroencephalographic Resting-State Networks:
Source Localization of Microstates

Anna Custo,"? Dimitri Van De Ville®>* William M. Wells>® Miralena |. Tomescu,
Denis Brunet,? and Christoph M. Michel'-?



Depression

Network is a biomarker of Depression,

the Montreal Neurological Institute 152 template (36). The
LORETA algorithm (upon which eLORETA is based) has been
validated in several studies combining LORETA with fMRI
(37-39), positron emission tomography (40,41), simultaneous
EEG-fMRI (42,43), and intracranial recordings (44).

LPS, a measure that quantifies the nonlinear relationship
between two regions after removal of the instantaneous
contribution, was then computed across DMN and FPN ROls.
Instantaneous measures of EEG-based connectivity are known
to be susceptible to the effects of volume conduction, which
can lead to the detection of spurious functional coupling
among separate regions. However, lagged connectivity cor-
rects for this because it reMn
two regions after this zero-lag contribution has been excluded.
In this respect, lagg mmon51dered to represent
,a_tm& |_connectivity. LPS between
ROIls was computed for each artifact-free EEG segment in the
frequency domain using normalized Fourier transforms. Based
on previous factor analyses of distinct frequency bands (45),
the frequency ranges were: delta (1.5-6 Hz), theta (6.5-8 Hz),
alpha 1 (8.5-10 Hz), alpha 2 (10.5-12 Hz), beta 1 (12.5-18 Hz),
beta 2 (18.5-21 Hz), and beta 3 (21.5-30 Hz). Additional details
can be found in the Supplement.

Biological
Psychiatry:
CNNI

Archival Report

Electroencephalography Source Functional
Connectivity Reveals Abnormal High-Frequency
Communication Among Large-Scale Functional
Networks in Depression

Alexis E. Whitton, Stephanie Deccy, Manon L. Ironside, Poornima Kumar, Miranda Beltzer, and
Diego A. Pizzagalli

ABSTRACT

BACKGROUND: Functional magnetic resonance imaging studies of resting-state functional connectivity have shown
that major depressive disorder (MDD) is characterized by increased connectivity within the default mode network
(DMN) and between the DMN and the frontoparietal network (FPN). However, much remains unknown about
abnormalities in higher frequency (>1 Hz) synchronization. Findings of abnormal synchronization in specific
frequencies would contribute to a better understanding of the potential neurophysiological origins of disrupted
functional connectivity in MDD.

METHODS: We used the high temporal resolution of electroencephalography to compare the spectral properties of
resting-state functional connectivity in individuals with MDD (n = 65) with healthy control subjects (n = 79) and
examined the extent to which connectivity disturbances were evident in a third sample of individuals in remission
from depression (n = 30). Exact low resolution electromagnetic tomography was used to compute intracortical
activity from regions within the DMN and FPN, and functional connectivity was computed using lagged phase
synchronization.
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the relevance of simultaneous zero-lag synchronization between brain areas in
humans remains largely unexplored.

This negligence is due to the confound of volume conductionquasi

zero-phase related EEG source fluctuations are physiologically mean
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.E INFO ABSTRACT
\
Light Sedation 'l : ' b l. § The development of sophisticated computational tools to quantify changes in the brain’s oscillatory dynamics

. I ' »graphy across states of i have included both lope- and phase-based measures of functional connectivity
> (FC), but there are very few direct comparisons of these techniques using the same dataset. The goal of this study
was to compare an envelope-based (i.e. Amplitude Envelope Correlation, AEC) and a phase-based (i.e. weighted

Phase Lag Index, wPLI) measure of FC in their classification of states of consciousness. Nine healthy participants

)
v 3 underwent a three-hour experimental anesthetic protocol with propofol induction and isoflurane maintenance, in
L which five minutes of 128-channel electroencephalography were recorded before, during, and after anesthetic-
induced i at the following time points: Baseline; light sedation with propofol (Light Sedation); deep

unconsciousness following three hours of surgical levels of anesthesia with isoflurane (Unconscious); five minutes

AEC has better
sensitivity than
WPLI

prior to the recovery of consciousness (Pre-ROC); and three hours following the recovery of consciousness (Re-

covery). Support vector machine classification was applied to the source-localized EEG in the alpha (8-13 Hz)
frequency band in order to investigate the ability of AEC and WPLI (separately and together) to discriminate i) the
R Pre-ROC four states from Baseline; ii) U ious (“deep” ) vs. Pre-ROC (“light” unconsciousness); and iii)
responsiveness (Baseline, Light Sedation, Recovery) vs. unresponsiveness (Unconscious, Pre-ROC). AEC and wPLI
yielded different patterns of global connectivity across states of i with AEC showing the strongest

network connectivity during the Unconscious epoch, and wPLI showing the strongest connectivity during full

.’ consciousness (i.e., Baseline and Recovery). Both measures also demonstrated differential predictive contributions
“ across participants and used dlfferent brain regions for classification. AEC showed higher classification accuracy

Source level
analysis

overall, particularly for disti: hetic-induced i from Baseline (83.7 + 0.8%). AEC also

Fig. 3. Topographic maps of source-localized global connectivity in the alpha
band between the 82 cortical regions of interest across states of consciousness.
To compare and contrast the patterns of connectivity captured by Amplitude
Envelope Correlation (AEC) and welghted Phase Lag Index (wPLI) across var
ious states of consciousness, the group-level means of AEC and wPLI for each
5-minute epoch were displayed on 82 regions of a brain parcellated according to
the AAL atlas, For each time point and for each measure, the same topographic
map is depicted in 2 different views: axial top view (left), and mid-sagittal view
of the left hemisphere (right). The average connectivity of each ROI to the rest
of the brain regions defined in the AAL atlas is depicted by a color: red repre-
sents higher strength in connectivity, while blue represents lower strength in
connectivity.
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Function connectivity in language study

* Findings suggest that resting state EEG
network modularity is likely to serve as s
a reasonable, reliable, and cost- o o Brain and Language
effective neural marker of the L el L
development of first language but not
second language literacy skills.

Resting state EEG network
modularity predicts literacy skills in
L1 Chinese but not in L2 English
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